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UNIVERSAL VIBRATION APPARATUS TM 16

SECTION ONE
e Introduction

The Universal Vibration apparatus enables a comprehensive range of vibration experiments to be performed with the

minimum amount of assembly time and the maximum of adaptability.

The experiments have been so designed as to lead the student through the basics of vibration theory by means of,
initially, very simple experiments - which make way for those of a more extensive nature as experimental aptitude
increases.

Although the policy of the experiments is to give the student a general insight into experimental methods, some
attempt has been made to evoke further study and critical appreciation by subsidiary questions posed at the end

of some of the tasks.

PURPOSE OF THE MANUAL

This manual has been written primarily to give details of the apparatus required and the experimental techniques
involved for each experiment in turn. Each experiment is presented with an 'Introduction' dealing with the
purpose and basic theory involved. Further sections detail the apparatus and experimental method with reference

to photographs and diagrams included in the text.

Finally, the form of calculations and results is given, followed by any "Further Considerations" which may be

significant.

SECTION TWO

2. GENERAL DESCRIPTION OF APPARATUS

2.1 Portal Frame

The apparatus consists of a basic portal frame, robustly constructed, from 68 mm square, rolled

hollow section, vertical uprights and double 100 mm x 50 mm channel horizontal members. The frame is mounted on

4 castors for ease of mobility.

Screw Jjacks allow the weight of the frame to be transferred to the floor during operation of experiments, which

enables the entire rig to be levelled prior to the experimental work and guarantees rigidity.

The frame has been fully machined so as to be adaptable to accept all the listed experiments. An attractive

storage cupboard is fitted at the front which houses all the components when not in use.

2.2 E. 11 High Precision Speed Control Unit

A d.c. motor is used for all forced vibrations experiments powered by the E11 control unit (see below'). This
unit comprising control box and d.d. motor, provides high precision speed control of the motor up to 3000

rev/min , irrespective of the normal load fluctuations of the motor.

The front panel of the unit contains a speed control knob, a fully calibrated speed meter incorporating an
automatic range switching device (there being two ranges: 0 - 1500 and 0 - 3000 rev/min, and power sockets for

(i) mains input; (ii) d.c. motor; (iii) auxiliary output (either to a stroboscope or chart recorder).



The above photograph also show an oscilloscope (Not Supplied)which has been susperseded by the the TecQuipment
E21. (See also Fig 10.1).

2.3 List of Components
Part No: DESCRIPTION EXPERIMENTS
B1 Steel Sub-frame (cross-beam) 1,2,3,4,5
B2 Wooden Ball for Pendulum 1
B3 Steel ball for Pendulum 1
B4 Kater (adjustable)pendulum 4
B5 Wooden compound pendulum 3
B6 Simple bob pendulum 2,3,
B7 Bifilar suspension (+ masses) 5
c1 Spring support 6,12,13,14
c2 Guide bush assembly 6
C3 Loading platform 6
D1 Trunnion mounting 10,11,12,12,14
D2 Dashpot assembly 10,11,12,13,14
D3 Dashpot bracket 12,13,14
D4 Out-of~balance discs 12,13, 14
D5 Beam support 12,13,14
D6 Stylus and support 12,13,14
D7 Chart recorder 12,13, 14
D8 Pivot support for stylus 14
D9 Beam clamp 12,13,14
E1 Trunnion mounting with

lateral movement 10, 11
E2 Support for dashpot 10, 11
E3 Support for micrometer 10, 11
E11 Speed control unit with

exciter motor, graduated discs 10,11
E5 Contactor 10, 11
E6 Rectangular section beam 10,11,12,13,14

G1 Vibration absorber "



-3-

H1 Rotor (254 mm diameter) 7,9
H2 Rotor and additional masses

(168 mm diameter) 9
I Bracket 7
K1 Shaft support bracket 8
K2 Dashpot assembly 8
K3 Rotor and recording drum 8
K4 Transparent oil reservoir 8

SECTION THREE

EXPERIMENT 1: SIMPLE PENDULUM

1. Introduction

One of the simplest examples of free vibration with neglible damping is the simple pendulum. The motion is
simple harmonic, characterised by the equation
Eii = -|g} x
dt? (1}

The periodic time is given by 1 = 215/1

g

In this experiment, the object is to analyse the above equation for the periodic time by varying 1 (the length of

the pendulum) and timing the oscillations. The independance of the size of the mass of the particle is also

demonstrated.

2. Apparatus as.shown in Fig 1.1
Sub-frame (cross-beam) B1
Small Wooden Ball B2
Small Steel ball B3

Inextensible flexible cord (not supplied)
Stop watch or clock (not supplied)

Metre rule (not supplied)
Both the steel and wooden balls are attached to lengths of cord about 1 metre long each of the two cords being
supended from the small chucks at either end of the sub-frame. By pulling the thread through the chuck and the

hole above the sub-frame, the length can be varied.

8o Experimental procedure

Use a metre rule (not supplied) to measure the length 'l', the distance from the bottom of the chuck to the

centre of the ball. The pendulum is displaced through a small angle and allowed to swing freely.
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time taken for, say, 50 complete oscillations is noted and the periodic time 1 recorded.

This is repeated for various values of 'l' for both the wooden ball and the steel ball. The results are entered

in
1.3

the table Fig 1.2. Values of rzare then plotted against values of 1. The resulting graph is as shown in Fig

Length | Time for 50 complete | Period

L oscillations T T

(m) steel wood steel steel

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Fig 1.2 Table of results for Experiment 1

The graph results in a straight line giving a relationship between t2and 1 of the form t?= K.1 , where K is a

constant equal to

4T 2 which is equal to the slope of the line.
g

Hence the value of g, the acceleration due to gravity can be determined.

"l'Z

”’f"

,/
Lr,,—"
0 010 020 030 040 050
Length of pendulum, | metres

Fig 1.3 Graph of t2against 1 for a simple pendulum

Further Considerations

What inaccuracies exist in this method for calculating a satisfactory value for 'g'?

How can one overcome these inaccuracies?

EXPERIMENT 2 COMPOUND PENDULUM

Introduction

rigid body swinging about a fixed horizontal axis (see Fig 2.1), displaced through an angle © , is subjected
restoring couple. mgh sin 8
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If angle 9 is sensibly small, the equation of motion becomes d?6 + ( mgh ) 0=0
dt?

where m = mass of the body
h = distance of the mass centre from the swing axis
© = angular displacement
IA = moment of inertia of the body about the swing axis
The motion is simple harmonic; the constant mgh = w?
IA
and the periodic time T = 2T
w
ie t= 2mla
mgh
Now IA = IG + mh® (by the parallel axis theorem) and IG = mk? where k is the radius of gyration of the

body about axis through the mass centre parallel to the swing axis.

Therefore, T = 27 /k® + h?
gh

knife edge | |

JT'[_/

h

Fig 2.1
2. Apparatus

The compound pendulum consists of a 12.7 mm diameter steel rod 0.762 m long. The rod is supported on the cross
member B1 by an adjustable knife-edge which, when moved along the rod, effectively alters the value of 'h'

discused above.
3. Method

The centre of gravity of the rod is first located, (midway along the rod). The knife-edge is tightened at a
given value of L1 from one end and the rod is suspended by placing the knife-edge on the cross beam so that it
swings freely through a small angle without any rotation at the support. The time for, say 50 oscillations is

then noted and the periodic time T recorded.

In order to perform a subsequent test, the knife-edge is slackened off and moved alcng the rod to a new
position. It is found most convenient to remove the pendulum from the cross beam and to do any adjustments away

from the portal frame.
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The expression for the periodic time can be transformed to t* h = 47?  h? + 4 1°  k?

g g

Plotting a graph of t’h to a base of h? a straight line is obtained. From the slope of the line g is found and

from the intercept, k is determined and compared with the theoretical value.

&4, Results

Tabulate the results as shown in Fig 2.2

Theoretical value of k can be found using Routh's Rule which for a rod of small cross-section gives k* = L3/3.
L1 h Time for 20 |Period| h? T*h
oscillations T
(m) (m) (s)
0.45
0.50
0.55
0.60
0.65
0.70
0.75
Fig 2.2
So Further Considerations
Uo Calculate the length of the simple equivalent pendulum for the above case

—_—
t= 2m /1 (simple pendulum) is equal to 2w/k*® + h®
g gh

for a compound pendulum.
2. Find the two values of h which satisfy the resulting quadratic equation giving equal periodic times.

EXPERIMENT 3: CENTRE OF PERCUSSION

G Introduction

If a compound pendulum supported on a horizontal pivot is subjected to an impact force at an arbitrary point,
there will, in general, be a horizontal reaction at the pivot. The situation can be likened to a cricket bat
striking a ball. There 1s one particular point at which the strike occurs, for which there is no horizontal
reaction at the pivot of the compound pendulum; such a point is called the centre of percussion. The location of

such a point is the object of this particular experiment.

The apparatus illustrated in Fig 3.1 consists of a steel ball as part of a simple pendulum (B6) and the
rectangular shaped wooden compound pendulum (B5) having an adjustable steel weight slideable in a central slot.
Both are suspended on steel knife-edges from the horizontal cross-beam (B1) at the top of the portal frame. The
simple pendulum is located in a vee groove whilst the knife-edge of the compound pendulum rests on the flat

surface of the beam.
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Fig 3.2

EXPERIMENT 3(i)

3. Method

To determine the centre of percussion of the compound pendulum, first of all determine its periodic time and then
using the formula:
2
T= 27 k A

gh ... 341

determine kA the radius of gyration about the pivot axis.
k‘A = k? + h? (parallel axis theorem).

h is the distance from the point of suspension to the centre of gravity.
The centre of gravity of the pendulum is determined by resting the board, with the steel weight at a distance y
from a knife-edge support. The distance h from the knife-edge of the pendulum to the balancing knife edge then

determined (see Fig 3.2).

For each position of the steel weight, the periodic time for 20 oscillations is determined. From the values of T

and h in equation 3.1, the value of KA is then determined and compares with theoretical values.
Record all results in a table in the form of Fig 3.3.
Results
The results entered in the table in Fig 3.3 will indicate the variation of periodic time as the radius of

gyration about the point of suspension varies. A theoretiical value for k, the radius of gyration about the

centre of gravity may be calculated from the dimensions of the pendulum.

Test Time for 20 Period ¥y|h kA k
No oscillations T
(s) (m)| (m) | (m) (m)
1
4,
So
Fig 3.3

EXPERIMENT 3(ii)

4, Using the results of Experiment 3(i), the centre of percussion may now be showr to be at a distance from

the point of suspension equal to its equivalent length.
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where 1 is the length of the equivalent pendulum
k is the radius of gyration about the centre of gravity k‘A = k? + h?
h is the distance of the point of suspension from the centre of gravity

The experiment is performed by adjusting the length of the simple pendulum (B6) so that the length of the bob
from the knife-edge is equal to the equivalent length of the compound pendulum determined above. The simple
pendulum is allowed to swing, so that the spherical bob strikes the edge of the compound pendulum at its perigee

lowest point of its path) and causes the latter to swing.

By constraining horizontal movement of the simple pendulum in its vee groove, the only horizontal movement

possible is that of the compound pendulum resting on its flat support. It may be observed that no horizontal

movement 1s produced with the simple pendulum = 1 and that for any other values, horizontal movement is
produced. (A pencil mark on the cross beam under the initial knife-edge position may be used as a reference
mark) .

EXPERIMENT 4

DETERMINATION OF THE ACCELERATION DUE TO GRAVITY BY MEANS OF A KATER (REVERSIBLE) PENDULUM

1. Introduction

The Kater pendulum is a device for accurately determining the acceleration due to gravity. This consists of two
adjustable knife-edges and an adjustable cylindrical bob. By arranging their relative positions to give equal

periodic times when suspended from either knife edge, two simultaneous equations are produced.

h,? h,?
i.e. T, = 27 ! +K* and T, = 2% "2 + k?
gh,
2 2 2 a 2 2
then BT . p s, g ang BT =B+ K
4 w2 3 4 2
Then, by arrangement: 4 7% = T2 + 12 4+ 1,212
g 2(h; + hy) 2(h, - h,)
2. Apparatus

The apparatus required for this experiment is a pendulum having two adjustable knife edges and an adjustable
cylindrical bob (B4) suspended from the hardened steel cross beam (B1). See Fig 4.1.

Fig 4.1



Sa Method

The knife-edges are positioned a given distance apart, and the pendulum is then suspended from one of the
knife-edges. The periodic time T is then found by timing 50 oscillations. The pendulum is then reversed and
suspended from the other knife-edge and by suitable positioning of the cylindrical bob, the periodic time TZ is

obtained so as to be approximately equal to T;..
Tyis then rechecked and further adjustments made to obtain an equal time of swing.
Proceeding thus, T, is obtained approximately equal to 11 after which T, and Tz are determined for 200 swings.

The centre of gravity of the final arrangement is then found by balancing on a knife-edge and h, and h, are

determined, being the respective distances of the two knife-edges from the centre of gravity. The distance

between the two knife-edges ' L' is thus the length of the simple equivalent pendulum.
4, Results
h, = 0.20m h, = 0.30m
T, = T2 =
apt o= (Th e ThH 4 (B 4 TR
2(h, + h,) 2(h; - h,)

From which the value of g is determined

Fig 4.2

EXPERIMENT 5: BIFILAR SUSPENSION

1. Introduction

The bifilar suspension can be used to determine the moment of inertia about an axis through the mass centre of
bodies which can be conveniently suspended by two parallel cords of equal length (see Fig 5.1). Angular
displacement of the body about the vertical axis through the mass centre G is given by the angle @ which is

sensibly small.

Fig 5.2
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This equation of the angular motion is given by: Id?€ = - mgb? 4
dt? 4L

which may be written g+ _gb® ©=0
. 4k*L

The motion is clearly simple harmonic and the period is given by

T = 4 WKL

J gb
Note that 'I' is moment of inertia about swing axis through G. (I = mk?)

Knowing the periodic time and the magnitudes of the various parameters, the radius of gyration k and hence the

value of I are easily determinable.
2. Apparatus

The apparatus (shown in Fig 5.1) consists of a uniform rectangular bar B7 suspended by fine wires from the small
chucks as used in Experiment 1. Thus the lengths of the suspension are easily_altered by drawing the two wires
through the chucks and tightening. The bar is drilled at regular intervals along its length so that two 1.85 kg
masses may be pegged at varying points along it.

So Method
The bar is suspended by the wires, the length L adjusted to a convenient size, and the distance between the

wires 'b' is measured. The bar is the displaced angularly through a small angle. The time for 20 oscillations
is then measured, from which the periodic time may be calculated.

The length of the wires L may then be adjusted, and a further 20 swings timed. The inertia of the body may be
increased by placing two masses symmetrically on either side of the centre line distance x apart, and repeating
the procedure for various values of L and the distance between the masses. The radius of gyration k of the

sysstem may be calculated as previously outlined.
4. Results

These are best tabulated as shown in Fig 5.3

Test | L X i k k? m I = mk?
No [ (m) | (m)|(8) | (m) | (m*)| (kg)| (kem?)

1.
2.
3.
4,

Fig 5.3 Table of Results for Bifilar Suspension

It is instructive to compare the value of 'I' obtained in a particular test with the value of I' determined
analytically (using IS m x?).

o Discussion of Results

Some noteworthy points will have arisen as a result of your having performed this experiment. Write out your

conclusions.
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6. Further Considerations

1. How would one determine the radius of gyration, and hence moment of inertia, of a body using the bifilar
suspension?

EXPERIMENT 6: MASS - SPRING SYSTEMS

1. Introduction

A helical spring, deflecting as a result of applied force, conforms to Hooke's Law (deflection proportional to
deflecting force).

The graph of force against deflection is a straight line (see Fig 6.2).

x

—
o

z
i
i

k—‘-i’ £

AF

Force

Fig 6.2.

Deflection

—F

Fig 6.1.
Slope of the line A x 1is the "deflection coefficient" in metres per newton.
A F
The reciprocal of this is commonly called the stiffness of the spring being the force required to produce unit
deflection. A rigid body of mass M under elastic restraint, supported by spring (s), forms the basis of all
analysis of vibrations in mechanical systems.
The basic equmation is of the form:

.

Mx = ~kx

where k¥ = stiffness of the spring
The motion is clearly simple harmonic of periodic time T = 27 M
J k

2. Apparatus

The required set-up for the experiment is shown in Fig 6. 1. This utilises any one of three helical springs of
varying dimensions which may be suspended from the upper adjustable assembly (C1) clamped to the top member of
the portal frame.

To the lower end of the spring is bolted a rod and integral platform (C3) onto which bodies of mass 0.4 kg may be
added. The rod passes through a brass guide bush, fixed to an adjustable plate (C2) attached to the lower
member. A vernier depth gauge is supplied which, when fitted to the upper assembly with its movable stem resting
on the top plate of the guide rod, can be used tc measure deflection, and thereby stiffness, of a given spring.



3o Experimental Procedure

The springs to be tested are fixed to the portal frame, with the loading platform suspended beneath, and with
the guide rod passing through the guide bush. The system is carefully adjusted to ensure that the guide Sush is
directly below the top anchorage point of the spring, since any misalignment incur errors in the experiments
because of the guide rod rubbing against the guide bush. (To minimise friction at the bush it is advisable to

smear a little grease or oil around the bush).

The length of the spring is then measured by the vernier gauge with the platform unloaded and then after each
increment of weight is applied. Loads are applied until some suitable maximum load is reached, after which each
load increment is removed and the extension on unloading is compared with that with the load increasing,

resulting in a mean value of extension for the spring.

This should result in a straight line graph for extension plotted against load, from which the spring stiffness k

may be determined.

The second part of the experiment involves adding varying masses to the platform, pulling down on the platform
and releasing, - thus giving rise to vertical vibrations of the system. The periodic time of these vibrations is
found by timing 20 oscillations. A graph is then drawn of 72 against M, from which g and m are found from the
slope of the graph and the intercept of the line on the M axis produced respectively.

Note that T2 =[4 w* \ M
k

The mass of the rod and platform have to be included in the 'M' above. Enter the results in suitable tables and

record the relevant data in respect of the spring(s) used (diameter of wire, number of coils, etc)
4, Results

Tabulate the results in respect of force and deflection for one of the springs in the first part of the
experiment; the form of the table is shown in Fig 6.3. The corresponding graph, Fig 6.4, will give the value of

k. Record data in respect of the spring as follow:

Mean coil diameter =

Mean wire diameter =

Enter the results of the second part of the experiments in a table as shown in Fig 6.5. The mass of the platform
and guide rod assembly is included in the value for M. Plot a graph of the form shown in Fig 6.6. Draw the best

straight line through the points and determine its slope.
From the intercept of the line on the 'M' axis, the effective mass of the spring is found (m). Compare the value of
m thus obtained with the generally accepted value, viz. 1/3 mass of spring. The procedure can be repeated with

the other springs provided.

SF Discussion of Results

State cenclusions in the light of the results obtained. Basic theory verified?

6. Further Considerations

1. From the experiments so far performed, discuss the relative merits of each in calculating an accurate
value for 'g'. Criteria for your comments should be:
(a) Ease of experimentation
{b) Inherent Inaccuracies

(¢) Ease of computation
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2. Choosing some typical results, what error is introduced in calculating g by neglecting the effective

mass of the spring?

M Deflection x Mean x //”
(kg) loading | unloading (mm}

0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0

Deflection x (mm)
\

o
o
o

20 30 0
Fig 6.3, Mass M (kg)

Fig 6.4.
M Time for 20 Per%?d

(kg) | oscillations| (s) T

1.47
3.47
3.87
4,27
4.67
5.07
5.47

Fig 6.5 . /
/

TZ

0 10 20 30 40 50 60
Mass, M(kg)

Fig 6.6.

EXPERIMENT 7: TORSIONAL OSCILLATIONS OF A SINGLE ROTOR

1. Introduction

This is an example of simple harmonic angular motion, the system comprising a rigid rotor at one end of an

elastic shaft. It is called torsional vibration because of the twisting action on the shaft.

Analysis of this situation is analogous to the previous one (Experiment 6). Deflection x is replaced by 9, k,

which was stiffness, 1is now torsional stiffness of the shaft, and mass M is replaced by I, the polar moment of

inertia of the rotor.

The equation of motion is Ié = -k 8 clearly S.H.M.

It can be shown that Period, T = 2 j/zz
¥ GJ
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where L is the effective length of the shaft

G is the modulus of rigidity of the material of the shaft
J is the polar second moment of area of the shaaft section
2. Apparatus

For experiments on undamped torsional vibrations, the inertia is provided by two heavy rotors, cylindrical in
shape, one 168 mm diameter the other 254 mm diameter. The smaller diameter one H2 is depicted in Fig 7.1. The
rotor is mounted on a short axle which can be fitted in either of the vertical members of the portal frame and

secured by a knurled knob.

The rotor is fitted with a chuck designed to accept shafts of different diameter. The shaft is rigidly clamped
by an identical chuck, which is an integral part of a bracket (Il) which is at the same height as the flywheel
chuck and adjustable, relative to the base of the portal frame. Three steel test shafts are supplied with the
rig, 3.18, 4.76 and 6.35 mm in diameter, each 965 mm long.

The inertia of the smaller rotor can be increased by bolting two pairs of steel arms to each side and attaching

heavy masses at each end. Two pairs off masses are available of approx. 1800 g and 3200 g.

EXPPERIMENT 7(i) TO DETERMINE THE MOMENT OF INERTIA OF A FLYWHEEL

3i Procedure

The moment of inertia of a flywheel (one of the rotors would be most suitable), can be found experimentally by
the falling weight method. The flywheel is mounted as described above so that it can rotate freely on an axle

fitted to one Of the vertical members of the frame.

(In the case of the smaller rotor with the added masses in position, it is necessary to clamp the rotor in the
reversed position, since a complete revolution of the whole assembly is impossible with the rotor clamped inside

the portal frame).

A suitable body of mass m is attached to a length of string which is wound around the circumference of the rotor
and looped around a steel peg projecting from the rim. The body is allowed to fall through a measured height h
to the ground and the time of descent t; recorded by a stop watch. (not supplied)

The number of revolutions n of the wheel during this period of acceleration is found, also the number of

1
revolutions n, and the corresponding time t, from the instant the body strikes the ground to the instant the
rotor comes to rest. The length of string should be suitably adjusted so that the string detaches itself as the
body strikes the ground. More than one test should be performed so as to obtain average values for n;, , n, and

the times t; and t,.

4. Theory

Apply the basic energy equation: W = AE to the two phases of the motion of the system.
Acceleration _ -

period -Te 0y 2w = im [?‘ - 0] + mg [p - hJ +3I Ly’ - OJ

Deceleration

period =T, 0, (2m = }1I [O—W‘]

Eliminating T_. from the above two equations gives

[n, n
1, D2
n,

From which 'I' can be calculated

£
mgh = % mv?® + } Iw?
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Notation
m = mass of the falling body (kg)
h = height of fall (m)
v = maximum velocity of the body striking ground (m/s)
W = corresponding maximum angular velocity of the wheel (rad/s)
Tf = Frictional torque at the bearing of the wheel (Nm)
n, = number of revolutions of the flywheel required to wind up the string from the ground to the
starting point
n, = number of revolutions the wheel makes after the falling body strikes the ground
(deceleration period)
n, = Wt
4T
and h = 9_:_3.,t1 (t1 = time of fall of the body (s))
2
v = 2h and w = Vv
t, r r = effective radius (m)
t. = time for wheel to come to rest after the falling body has reached the ground (s).

When performing a practical test the value of m should not be too big, otherwise the time of the second phase of

the motion runs into many minutes. A value m equal to about 0.05 kg is suggested.

'I' comes to about 0.18 kg m 2.

EXPERIMENT 7 (ii),FREQUENCY OF TORSIONAL OSCILLATIONS (SINGLE ROTOR SYSTEM)

Having determined.a value for I for a particular rotar by: the method described in Experiment 7 (i) using one of the
three shafts, the frequency of torsional osclllations of a single rotor system can be found experimentally and

the result compared with theoretical prediction.
Bg Procedure

The shaft is passed through the central hole in the bracket, so that it enters the chuck on the flywheel and the
latter 1is then tightened. The bracket is then moved along the slotted base until the distance between the jaws
of the chuck corresponds to the required length L. The chuck on the bracket is then tightened.

Having ensured that the shaft is securely gripped in the jaws, the rotor (flywheel) may be displaced angularly
and the time for 20 oscillations is recorded. The distance between the chucks is then varied in suitable
increments by sliding the bracket, and values of periodic time corresponding to various lengths of shaft

tabulated.

6. Results

L Time for 20 Period T2

(mm) oscillations | 7 (s)

100
150
200
250
300
375
450

Fig 7.2
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Record the results in a table of the form of 7.2. Plot a graph of t2against L as shown in Fig 7.3.

From the slope of the graph 4 T? I determine the value of G and compare with the generally accepted value.
GJ

/

'I'Z
N

//
i
0 100 200 300 400 500
L (mm)

Fig 7.3 Graph of 2 v.L

%o Further considerations

o Using the falling weight method how would the results be affected if the string were wrapped around the
axle of the wheel instead of around its rim?

2. What change(s) in procedure would be necessary if a stepped shaft were used instead of one of uniform
section throughout its length.

~

EXPERIMENT 8: TORSIONAL OSCILLATIONS OF A SINGLE ROTOR WITH VISCOUS DAMPING

1. Introduction

In this experiment, the effect of including a damper in a system undergoing tersional oscillations is
investigated. The amount of damping in the system depends on the extent to which the conical portion of a rotor

is exposed to the viscous effects of a given oil.
2. Theory

The equation of the angular motion is given by
Id® = -Cd8 -k@
dt? dt
which may be written

d?’g + ado + bg=0

dt? dt
where a = ¢ and b = k
I I

The solution for'angular displacement is given by
B = C.e ® cos (pt + V)

where ¢ =Jb - a?

4

and C and ¥ are constants

N.B., #* = -at and # = a (nT)
2 2z

Periodic time t = 27
P Fig 8.1
Measuring amplitudes on the same side of the near position, the nth oscillation is given by xo =ef
%4
n is a positive integer corresponding to the number of complete oscillations starting at a convenient datum (t = 0)
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Putting n = 1 gives the logarithmic decrement loge Xy = T. This is all that is needed by way of basic theory.

&
x 2

D1
3. Apparatus

The apparatus for this experiment consists of a vertical shaft gripped at its upper end by a chuck attached to a

bracket (k1) and at its lower end by a similar chuck attached to a heavy rotor (K3).

The rotor (K3) is suspended over a transparent cylindrical container (K4) containing damping oil. The oil
container can be raised or lowered by means of knurled knobs on its underside, thereby altering the area of

contact between the o0il in the container and the conical portion of the rotor. This effectively varies the
damping torque on the rotor when the latter oscillates. A trace of the damped oscillations can be recorded on
paper wrapped round a drum mounted above the flywheel. Unit K2 consists of a pen-holder and pen which can be
adjusted so as to make proper contact with the paper; the unit undergoes a controlled descent over the length of

the drum by means of an oil dashpot clamped to the main frame.

Shafts of various diameters may be used, but due to the location and necessary fine adjustment of the oil
container, the length is restricted to about 0.75 m. The angular displacement of the flywheel may be measured by
means of a graduated scale on the upper rim of the rotor. An etched marking on the frame serves as a datum for

the measurement of angular displacement.

4. EXPERIMENT 8 (i) DETERMINATION OF DAMPING COEFFICIENT

The cylindrical container (K4) is first filled with oil to within about 10 mm of the top and the knobs underneath
adjusted so that the oil surface is level with one of the upper graduations on the conical portion of the rotor.

d = 175 mm giving maximum damping is suggested (Details of the graduations are given in Fig 8.3)

Having selected and fitted a suitable shaft, the length of the shaft between the two inside faces of the chuck,
together with the diameter of the shaft, should be noted. The rate of descent of the pen in mm/second should be
measured by timing the descent of the pen over a fixed length of paper, using a stopwatch. (Not supplied)

The torsional oscillations of the system for the chosen damping condition can then be recorded. The pen is then
raised to the top of the paper on the drum and the rotorAthrough a suitable angle (about 40 deg) and released. &
trace of the oscillations can then be obtained by bringing the pen into contact with the paper (using the
thumb-nut on the suppoft) and allowing the pen to descend.

A trace of the amplitude of oscillation will be recorded showing decay of the vibration, due to the damping. The
rate of descent of the pen providing a time scale.

From the given trace, Fig 8.1, measure five successive amplitudes starting with the initial one (n = 0) and
tabulate results as in fig 8.3.

\ / |
X ]
\ T |
\ / 6 S L %
/ T = \ d=150 4,{ Fig 8.2.
! 1
\ ) \ tis  f
\ oy - N A
_1 D i D
\ 87550 G =15 4
\ / 625 B\ 0250
\] / I’:'00:‘]7'5@0 =BA
VN Fig.8.1 125 yAlLdims inmm
! |
5. Results Time
n xn loge fg Plot a graph of 1oge fg to a base of n.
(mm) X *n
x0 = 0 A straight line through the origin confirms that the damping is viscous.

Slope of the line is equal to at (the logarithmic decrement).
2

S B N N =]
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The period can be found by timing a convenient number of oscillations using a stop watch, whereupon the constant
wa" is determined and hence the value of the damping coefficient (the torque per unit angular velocity) in Nm/rad

-1 . ‘s
s . The polar moment of inertia of the rotor is determined as in Experiment 7(ii).

5. EXPERIMENT 8 (ii) INVESTIGATION OF HOW THE DAMPING COEFFICIENT DEPENDS ON THE DEPTH OF IMMERSION OF THE
ROTOR IN THE OIL

Repeat experiment 8(i) for each oil level as defined by the seven graduations on the conical portion of the

rotor.

The damping coefficient depends on the area 'A' of the curved surface of the conical portion of the rotor

exposed to viscous damping. This area is equal to wrl where r is the radius of base of core and 1 is the slant

height equal to [r? + hZ.

Plot a graph of damping coefficient to a base of 'A' times mean radius.
7. Results

These are best tabulated as shown in Fig 8.3..

r Mean radius | Area | A. rn Period | Constant | Damping Coeff.
{mm) ro Iy (mm? ) T (8) rat (Nm/rad s°3
(mm) (mm? )
12.5 6.25
25 12.5
37.5 18.75
50 25
62.5 31.25
75 37.5
87. 43.75
|

Fig 8.3 Results of Torsional Oscillation with Viscous Damping

2

%é //
'_9% L

.551 Eg‘ ————’_,,————’

a M

s

=2 =90 00 200 300 400 500

Damping Area x Effective (Mean) Radius mm x10

State the probablz relationship between the two parameters.

EXPERIMENT 9: TORSIONAL OSCILLATIONS OF TWO ROTOR SYSTEM

1. Introduction

With the addition of a second rotor, the apparatus described in Experiment 7(ii) can be used to investigate the

oscillation of a two rotor system. For such a system the periodic time is given by:-



-19-
T = 2% I‘IIz]"
GJ (I, + I,

where I1 and I, are the moments of inertia of the two rotors
L is the length of the shaft between the rotors
G is the modulus of rigidity of the material of the shaft

and J is the polar second moment of area of the shaft section.

2. Apparatus

The apparatus (see Fig 9.1) used is that of Experiment 7, with the bracket (Il) replaced by a second rotor (H1)
which 1is free to rotate on a axle fixed to the left-hand vertical member of portal frame. Chucks are fitted to
both rotors so that shafts of various diameters can be used. Since the axles of both rotors are fixed tec their
respective vertical members, the length of the shaft may not be varied in this case but three shafts of different
diameter are supplied and three combinations of different inertias are possible.

3. Experimental Procedure

One of the shafts is clamped between the two rotors H1 and H, of predetermined inertia. The effective length of
the shaft measure between the jaws of the chucks is then recorded. The chucks must be carefully tightened to
ensure that neither rotor can slip relative to the shaft. Each rotor is rotated through a small angle in
opposite directions and then released. Torsional oscillations of the system are thereby set up and the time for

20 oscillations recorded.

Hence the periodic time of the system may be determined and compared with the theoretical value given by the
formula quoted in the introduction. The moments of inertia of the rotors should be determined by the method
described in Experiment 7.

4. Results

The results for various rotor and shaft systems are recorded in a table of the form shown in Fig 9.2

Polar second moment of area J = _T a"

32
The generally accepted value of G for steel is 82 GPa and for g 9.81 m/s?.

Shaft I, I, Time for 20 period Theoretical
diam | kg m* | kg m? oscillations T value of
mm period

3.17 : Fig.9.2.
3.17
4.76
6.35 !
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5. Further Considerations

When oscillating torsionally the two rotors oscillate back-to-back about a non moving section of the shaft,
called the "node". It is instructive to locate the position of the node for a given pair of inertias and their
shaft; one can do this by introducing a third (dummy) rotor in the form of a cardboard disc (negligible inertia)

and moving it along the shaft to a position where it becomes fixed in space.

EXPERIMENT 10: TRANSVERSE VIBRATION OF A BEAM WITH ONE OR MORE BODIES ATTACHED

1o Introduction

The frequency of transverse vibrations of a beam with bodies attached is identical to the critical (whirling)
speed of a shaft, of the same stiffness as the beam, carrying rotors the masses of which correspond to those of
the bodies on the beam. One has to think in terms of small size rotors, otherwise gyroscope effects are
involved. In the case of a beam with just one body attached, the basic theory is the same as that dealt with in
Experiment 6. For a beam with two or more bodies attached, other methods are used to determine frequency of free

transverse vibrations. Examples are as follows:

(i) Rayleigh or energy method; (gives good result)

(ii) Dunkerley equation (only approximate, but quite adequate)

(iii) Rigorous ({accurate) analysis (arduous)

(iv) Experimental analysis, using the equipment described below, (fairly simple and quick)
2. Apparatus

The basic apparatus for this experiment is shown in Fig 10.1. A bar of steel of rectangular cross-section (E6)
is supported at each end by trunnion blocks. The left-hand support (D1) pivots in two ball bearings carried in a

housing located on the inside face of the vertical frame member.

Fig 10.1

The right-hand support consists of two roller bearings which are free to move in a guide block, located on the
inside face. At the centre of the beam is bolted a small motor carrying two "out-of-balance" discs (part of
E11). The motor is connected via leads to the precision speed control unit, complementary to E11, which enables
a wide range of exciting frequencies to be applied to the beam.

Clockwise rotation of the speed control knob on the speed control unit increases the speed of the motor - thus
increasing the out-of-balance rotating force produced by the unbalanced discs. As the speed increases, as
indicated by the speed meter on the control unit, the beam begins to vibrate transversely; over a discrete band
of frequencies increasingly larger amplitudes of vibration are produced which reach a peak at a frequency
corresponding to the frequency of free natural transverse vibration of the system, i.e. beam plus added

components.
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3. Experimental Procedure

Bodies of different size mass M are suspended below the motor. For each value of m the speed control is adjusted

until the beam vibrates at its natural frequency.
In order to determine accurately the exact value on the speed meter, it is expedient to take the beam through the
range of excessive amplitudes several times, noting the limits of the range and thus gradually locating the

frequency at which the amplitude and resultant noise appears greatest.

Record observations in a suitable table; see Fig 10.2

m Frequency | f*( 1 x 10°
kg f (hz) £2
4.8
5.2
6.8
8.0
9.2
10.8
11.6
13.2
14.4
Fig 10.2 Table of Results for Expt 10(i)
4. Results

A graph of 1 to a base of m gives a straight line. (see Fig 10.3)
f!
The intercept on the vertical axis is equal to 1
2
f‘b

f = natural frequency of the system, i.e. beam plus added components

f, = natural frequency of the beam by itself.

Dunkerley's equation is applicable to this situation, it is given by:

Here fq = natural frequency of a corresponding light beam with mass m attached.
Clearly whenm = 0, fy = © and f = fy

Evaluate fpand compare with the theoretical value obtained from:
f, = =° [EI

2 [ mgl?
where L = Length of the beam (m)

= Modulus »t elasticity of material of the beam (N/m?)
I = Second moment of area of the beam section (m")
m, = Mass of the beam bv itself (kg) (no mass(es) attached)

Also, from the graph, when the system is not vibrating (period T = 0} f = o and 1z = 0.
The correspondingvalue of mass m is then equal to Mo the equivalent mass of the beam.
me = A.mo ( X = some constant). Determine the value of ). How does it compare with the generally accepted

value of 0.57
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5. Further Considerations

The validity of the Dunkerley equation in the more familiar form can be tested by moving the motor with
out-of-balance discs away from the centre of the beam and attaching a heavy body of known mass at some other
arbitrary point on the beam. The Dunkerley equation then becomes
1= 1+ 1«1
IR B
The f, in this equation could be the variable parameter and a graph plotted similar to the one described above.

L
2

Certain extra components (not supplied with the standard equipment) would be required to perform this additional

test. They are: a special block for attaching extra masses to the beam, and a suitable vibration generator of

variable frequency. ///4

73 X103

Fig 10.3

graph of %a against m for the system

0 5 10 15
Mass m kg

EXPERIMENT 10 (i) DAMPED TRANSVERSE VIBRATION OF A BEAM

6.1 Introduction

Damping forces are counteracting forces in a vibration system which gradually reduce the motion. Damping occurs
in all natural vibrations and may be caused by Coulomb friction (rubbing between one solid and another), or
viscous resistance of a fluid as in this experiment on damped transverse vibration of a beam where a dashpot is
used.

7.2 Apparatus

This is shown in Fig 10.1 (i.e. the same set up as for Experiment 10(i), but with certain additions). In this
experiment, amplitude of vibration and phase angle are required. A dashpot (D2) and for support for the latter,
(E2) are provided. The amplitude and phase angle are determined very accurately at any exicting frequency by the
use of a contactor (E5) and micrometer mounted vertically on its underside. The electric circuit, of which a

stroboscope is a part, is completed when the contact element E5 touches the plunger of the micrometer.

8. Experimental Procedure

Allow the speed control unit time to warm-up, then adjust the micrometer plunger so that it just touches the
contactor; with the stroboscope switched to EXTERNAL stimulus, a discharge occurs on contact.| the micrometer
reading should be taken, and this value is then used as a datum position from which values of amplitude may be

determined.
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The motor is then energised, producing a definite amplitude at a predetermined frequency. To determine the

amplitude the micrometer head will new need to be lowered and then brought up again to produce contact. It is
important that the strobscope discharges at a uniform frequency, and so careful adjustment must be made to ensure
steady conditions. At this point the amplitude of the vibration may be found by comparing the new micrometer
reading with that of the original datum position.

The phase angle may also be found by focussing the stroboscope on the graduated disc on the motor shaft; since the
stroboscopic discharge should be at a frequency corresponding to the rotational speed of the motor, the disc may
be effectively stopped and the phase angle corresponding to the datum mark on the motor read off. By following
this procedure for a range of frequencies, the effect of damping may be assessed by varying the piston area of
the dashpot and thus altering the damping characteristics of the system.

The two orifice plates inside the dashpot can be rotated relative to one another thereby varying the effective
area and the results obtained with these settings can be compared with an undamped condition (the cystem minus
dashpot) Graphs are then plotted of amplitude and phase angle against the frequency ratio (w/wn } i.e. (exciting

frequency / natural frequency).
N.B. At low frequencies, phase angle may not be obtainable.

9. Results

Plot the results in the form of Fig 10.4 - 10.6

Tables of results (Fig 10.4 - 10.6) show the effect of increasing damping on amplitude and phase angle. For each
damping condition a graph of amplitude against frequency can be plotted, from which a value for the natural
frequency for each damping condition can be found.

Typical values obtained in this way are as follow:

No Damping 17.36 Hz
Light Damping 17.50 H2

Heavy Damping 17.58 Hz

and from these values the frequency ratio can be found being the exciting frequency snatural frequency. Fig 10.7
and 10.8 are typical graphs of amplitude and phase angle plotted against frequency ratio.

Motor w |[Phase Amplitude Motor w Phase Amplitude Motor w iPhase iAmplitude
— X max - X max = | X max

speed vy Angle log | (mm) speed v Angle log | (mm) speed wa|Angle log ; (mm)

(rev/min) (deg) (rev/min) (deg) . (rev/min) . (deg) I !
500 500 500 : i |
600 600 600 ’ i
700 700 700 :
800 800 800 l
900 900 900 i
980 980 980 ,
1000 1000 1000 , i
1010 1010 1010 f :
1020 1020 i 1020 |

1040 1040 ; 1040 l

1050 1050 ' 1050 |

1055 1055 1055 i

1060 1060 1060

1075 1075 ‘ 1075 i

1100 11 100 ‘ 1100 |

1200 1200 i 1200

1300 1300 1300

1400 1400 ‘ 1400 ,

1500 1500 1500 !

1800 1800 1800 .

2000 2000 2000 '

2500 - 2500 l || 2500 ‘

Fig 10.6 Table of results Fig 10.5 Table of results Fig 10.4 Table of results

heavy damping light damping no damping
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EXPERIMENT 11: UNDAMPED VIBRATION ABSORBER

e Introduction

Excessive vibrations ‘in engineering systems are generally undesirable and therefore avoided for the sake of
safety and comfort. It is possible to reduce untoward amplitudes by attaching to the main vibrating system an
auxiliary oscillating system, which could be a simple mass-spring system or pendulum. In this experiment, the

vibration absorbability of a double cantilever system is examined.
2. Apparatus
Fig 11.1 shows the vibration absorber clamped below the motor. It comprises two bodies of equal mass fixed

equidistant from the midpoint of the horizontal cantilever. (The distance apart of the bodies is varied until

the system is "tuned").
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3. Procedure

For a given frequency, the masses of the vibration absorber is adjusted so that the energy of vibration is
transmitted to the absorber so that the amplitude of the main (primary) system, i.e. the motor and beam, is
reduced to zero.

The aim is to determine the length 1, the distance of the centre of each of the bodies from the midpoint of the
cantilever, so that the natural frequency of transverse vibration of sub system corresponds to the running speed

of the main (primary) system, i.e. the motor and the beam.

The formula for determining 'l' is

£ = 1 [3EL
2myml?

Here f = natural frequency of the sub (auxiliary) system
m = mass of each of the bodies
EI = flexural rigidity of the double cantilever

=
= LB, ] k! L L’ :
|
Fig 11.1

EXPERIMENT 12: FORCED VIBRATION OF A RIGID BODY - SPRING SYSTEM WITH NEGLIGIBLE DAMPING

1. Introduction

When external forces act on a system during its vibratory motion, it is termed forced vibration. Under
conditions of forced vibration the system will tend to vibrate at its own natural frequency superimposed upon
the frequency of the excitation force.

Friction and damping effects, though only slight are present in all vibrating systems; that portion of the total

amplitude not sustained by the external force will gradually decay. After a short time, the system will vibrate
at the frequency of the excitation force, regardless of the initial conditions or natural frequency of the
system. In this experiment, the natural frequency of the forced vibration of a rectangular section beam is
observed and coompared with the result determined analytically.

2. Theory
The system comprises:
(i) a beam AB, of length b, sensibly rigid, of mass m, freely pivoted at the left-hand end. See Fig 12.2

(ii) a spring of stiffness S attached to the beam at the point C

(iii) a motor with out-of-balance discs attached to the beam at D
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M = mass of the motor including the two discs

The equation of the angular motion is given by

I, d’¢ = (fsin will, - (S Lag L.
dt?
IA = ML* + mL?
3 the M of I of the system about the pivot axis

O = angular displacement of the beam
7 = maximum value of the disturbing force

w = angular velocity of rotation to the discs

The above equation reduces to the form

d®* ~ + b5y® = A sinwt

——_

dt?

The values of the constants b, A and w are known. Only the steady-state motion is of interest

i.e. @9 = 4 sin wt
b - w?
Amplitude, O max = A
b - w?
Resonance occurs when b - w? = 0

So the critical angular velocity of the motor is given by,/%i
Note that in practical circumstances the amplitude, although it may be very large, does not become infinite

because of the small amount of damping which is always present.

Fig 12.1.
Fo sin wt
S
e\i D w
= e == J
A \\u—f/'N c B
L mg
Mg
Fig 12. 2.
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2. Apparatus

The apparatus as shown in Fig 12.7 consists of a rectangular beam (D6). supported at one end by a trunnion
pivoted in ball bearings located in a fixed housing. The outer end of the beam is supported by a helical spring
of known stiffness bolted to the bracket C1 fixed to the top member of the frame. This bracket enables fine

adjustments of the spring to be made, thus raising and lowering the end of the beam.

The motor unit E11 (see Fig 12.3) is rigidly bolted to the beam with additional masses placed on the platform
.attached below. The forcing motion is provided by two out-of-balance discs on the output shaft of the belt
driven unit (D4), the forcing frequency being adjusted by means of the speed control unit.

Fig 12.3

The chart recorder (D7), fitted to the right-hand vertical member of the frame provides the means of obtaining a
trace of the vibration. The recorder unit consists of a slowly rotating drum driven by a synchronous motor,
operated from auxiliary supply on the E11 speed control unit. A roll of recording paper is fitted adjacent to
the drum and is wound round the drum so that the paper is driven at a constant speed. A felt-tipped pen is
fitted to the free end of the beam; means are provided for the drum to be adjusted horizontally so that the
pen just touches the paper. The paper is guided vertically downwards by a small attachable weight. By switching

on the motor, a trace can be obtained showing the oscillations of the end of the beam.

If the amplitude of vibration near to the resonance condition is too big then extra damping can be introduced

into the system by fitting the dashpot assembly (part numbers D2, D3 and D9) near to the pivoted end of the beam.

3. Experimental Procedure

The electrical lead from the synchronous motor is first of all plugged into the auxiliary socket on the control
unit E11. The hand wheel of bracket C1 is then adjusted until the beam is horizontal and the chart recorder

brought to a position where the pen just touches the recording paper.

The speed control unit can be switched on, resulting in forced vibration causing the beam to oscillate. It has
been found that a frequency of about 2 hertz is suitable, the position of the motor being adjusted accordingly:
the time for 20 oscillations will then be about 10 seconds. The chart recorder can be used to record the number
of cycles performed by the béam in a given time (calculated, knowing the speed of the paper or, better still, by

visual counting).
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The pen is brought into contact with the paper, then a recording is made from which the number of cycles per unit

time (i.e. the frequency) of the forced vibration beam can be calculated.
The speed of the paper on the chart recorder needs to be known: this is obtained by recording a trace for a
convenient time, say 20 seconds, and then measuring the length of the trace. The speed in mm/s can then be

calculated.

Determine the values of the relevant parameters as described in section 2 dealing with the theory: lengths Li, L2

magnitude of the masses m and M, also the stiffness of the spring.

4, Results and Calculations

4.1 Calculate: linear speed of paper on the drum the time of 'say' 20 vibrations, using a stop watch the

time for one cycle {(period of vibration) obtained two different ways the corresponding frequency.

4.2 Calculate relevant M of I.
Mass of motor with discs, M = kg
Mass of beam, m = kg
Lengths L1 =] m
gy = m
L = m
4,3 Calculate stiffness of the spring (as in Experiment No 6)
S = deflecting force = N/m
deflection
4.4 Calculate frequency of the forced vibration
The constant b = § = Nm™t = g2
I kg m?
f = w i.e. b = cycles/s (Hz) (Compare with the valves of f found in 4.1. above)

2T 2n
EXPERIMENT 13: FREE DAMPED VIBRATIONS OF A RIGID BOODY - SPRING SYSTEM

1. Introduction

During vibrations, energy is dissipated and thus a steady amplitude cannot be maintained without continuous
replacement. Viscous damping in which force is proportional to the velocity affords the simplest mathematical
treatment.

A convenient means of measuring the amount of damping present is to measure the rate of decay of oscillation.
This is expressed by the term "logarithmic decrement", defined as the natural logarithm of the ratio of

successive amplitudes on the same side of the mean position (see Fig 8.2)

In this experiment, the effect of the position of the dashpot and the corresponding damping coefficient are
assessed in terms of the logarithmic decrement, measured by the decay in amplitude of a free vibration in a beam.

2. Theory

Referring to Fig 12.1,, the disturbing force Fy sin wt is replaced by a damping force cL‘d 2 downward.
dt

The equation of the angular motion becomes IA 6= -(c Llé )Ll - (S L,e )L,
which can be put in the form:
6 + a é + b g=0

The theory from now on is identical to that set out in Experiment 8 (the same symbols are used).
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o Apparatus

The apparatus used is that shown in Figs 12.2 and 12.3 in experiment 12, except that the exciter motor is not
required since free vibrations only are of interest. The speed control box of E11 unit is required though in
order to drive the drum on the recorder unit D7. The system is set vibrating freely by pulling down on the free
end of the beam a short distance (15 - 25 mm) and releasing. The chart recorder is used to obtain a trace of
just three successive amplitudes on the same side of the mean position. The damping is varied by moving the
dashpot (D2) and its clamps along the beam, and also by the relative rotation of the two orifice plates in the
dashpot to increase or decrease the effective area of the piston as in experiment 10 (ii).

4, Experimental Procedure

The speed control unit is switched on and the lead from the motor of recorder unit D7 is connected to the
auxiliary supply socket on the control box E11. The dashpot is set at a particular distance L ; (the distance
from the trunnion mounting to the centre of the beam clamp (D9), and the beam is then pulled down a short

distance. under the point of attachment of the spring, and released.

The recording pen is brought into contact with the paper to produce a trace of the decaying amplitude of
vibration and thus a trace of the decaying applied amplitude is produced on the 'TELEDEDTOS' paper. For a given
piston area, various values of L, can be selected and traces obtained. A different piston area is then chosen and

the process repeated.

For each piston area and the value I; , the trace is used to evaluate the logarithmic decrement; The periodic

time of one complete oscillation, T , is found in the manner described in section 3 of Experiment 12.

Recapitulating:
Ln Zi. = aT Constant 'a' = ch
x; 2 IA
(Incidentally, constant 'b' = SLE)
IA

Hence the damping coefficient, ¢, the resisting force per unit relative velocity can be determined.

5. Results

It 1is suggested that the results are entered in two tables, see Fig 13.1, one relating to maximum damping

{orifice plates in the dashpot set to give maximum area), the other relating to minimum damping.

Suggested format of each table:-

Length |jAmpl. ratio| Log dec Period Constant Damping
L X Log Xo_ T ‘al Coeff ¢
(m) X X, (s) N/m s-!
0.1

0.15

0.20

0.25

Fig 13.1

Plot, on the same graph, values of Damping Coefficient ¢ against L?* . Typical plots are shown in Fig 13.2

Thus it can be shown that the logarithmic decrement - hence damping coefficient - varies according to the square
of the distance from the dashpot. The position of the dashpot on the beam may be adjusted to produce any degree

of damping, by consulting the graph. This information may be utilised in Experiment 14.
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Max. Piston Area

Min. Piston Area

/]
A
i

=

0 1 2 3 L 5 6
1% (Distance of Dashpot from Pivotj2m2x 10-2

Fig 13.2 Graph of Damping Coefficient against L? for Damped Free Vibrations

Damping Coefficient c(N/ms™)

EXPERIMENT 14: FORCED DAMPED VIBRATION OF A RIGID BODY- SPRING SYSTEM

1. Introduction

Having established the effect of viscous damping on free vibrations in the previous experimenet, the effect on
forced vibration in now analysed. The means of assessing the relative magnitude of the forced vibration is to
use the concept of "Dynamic magnifier” which is the ratio of the amplitude of the forced vibration to the
deflection produced if the maximum value of the disturbing force 'F' were applied STATICALLY under the same

elastic restraint.

2. Theory

The out-of-balance force F is given by 2mrw? (two discs)

m = mass corresponding to hole in each disc (kg)
r = radius to centre of hole (m)
W = angular velocity of discs (rad/s)

Note that the ratio of the rotational speed of the discs to that of the motor is 22:72. This must be taken into
account when calculating the angular velocity of the discs, w rad /s, from the speed indicated on the control

unit.

Referring to Fig 12.1
The equation of the angular motion is given by
— (cLg)IL _ (SL,gllL,

L.

IA ¢ = (F sin wt)L,

which is reduced to the standard form:
9+ ag+ b 9= Asinut
Only the steady-state motion is of interest
i.e. 6 = A sin(wt - g)

Jb = w?)? + wial




@ = phase angle lag tang = wa

b - w?

The other symbols have their usual meaning. Working in terms of angles the Dynamic Magnifier is given by

D - 0 max
m
eo
where 90 = angular displacement of the beam due to the force F applied STATICALLY
and 6 = FL
k o e . 1401
where k = S-L’z (the torsional stiffness of the beam)
Deflections measured are those of the end B of the beam and are given by x = Lg
so D = xmax
i []
L ® ... 14.3
It can be shown that
Dy = 1V
(1- w? + w?a’
b b? R I
And in nearly all practical circumstances, damping is "light", and therefore 'a' is sensibly small
Thus Dp = 1
1w
wz
= ..o 1405
w = circular frequency of the forced vibration (rad/s)
WINNS circular frequency of free undamped vibration (rad/s)
3. Apparatus

The apparatus used 1s shown in Fig 12.1 with the dashpot added and the addition of one extra item, a plate
clamped to the out-of-balance disc. The plate holds a piece of circular paper. See Fig 12.3

The recording pen if fitted to pivot (D8), which clamps to the upper member of the frame and may be clipped above
the frame when not in use. The pen thus makes a trace of the locus of the point at any radius on the rotor, and
- since the rotor is capable of vertical as well as rotational movement - a trace will be obtained from which the

phase lag can be determined.

4, Experimental Procedure

The natural frequency of the system is first found as described in section 4 of Experiment 13, by analysising the

free vibrations of the system, without the dashpot, from a trace produced on the chart recording unit D7.

The dashpot unit D2 is then fitted at a suitable point along the beam to give definite degree of damping (as
determined in Experiment 13). The exciter discs are then rotated at a very low speed and a datum trace obtained
on the paper mounted on the plate attached to the nearside disc. The position of the hole in .the disc is then
marked on the trace. The beam is then subjected to forced vibration by increasing the speed of rotation until a
reasonable amplitude is obtained. A second "dynamic" trace is then obtained on the paper mounted on the plate.
A trace should alsc be obtained on the chart recorder at the right-hand end of the beam (as in Experiment 12) in
order to determine the amplitude of the vibrations. The procedure is repeated for different speeds below and
above the critical speed to show how the value of dynamic magnifier varies with frequency for a given value of

the damping coefficient.

Determine the phase lag from the traces recorded on the paper as shown in Fig 1t4.1. Note that the dynamic trace
is displaced relative to the axis of rotation due to the vibration of the beam. If there were no phase lag
betwen the exciting force and the resulting vibration, the dynamic trace would be displaced along the datum line
corresponding to the out-of-balance force. By Jjoining up the peints of intersection of the two traces and
drawing a line through the axis of rotation at right angles, the phase 1ag@ is determined for the various speeds

of rotation of the discs.
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5. Results

The results are best tabulated as shown in Fig 14.2 the columns being number for the purpose of this explanation

only.

There will be two tables, one for the case of no damping, the other for a definite degree of damping. Present a

specimen set of calculations in respect of each table.

(1) (i1) (i1 (av) (v) (vi) (vii)
Exciter Angular W Amplitude Phase "Static" Dynamic
Motor Velocity Yoo max Angle Deflection | Magnifier
Speed of disc w lag

(rev/min) (rad/s) (mm) (deg) (mm) Dm

500
550
600
625
640
650
660
675
700
800
900

Fig 14.2

Column (ii) w = (N x27) 22
60 72

Hence the ratio, column (iii)

Amplitude, column (iv), is obtained from the trace on the drum recorder D7, and the corresponding phase angle
lag, column (v) is obtained in the manner already described. The "Static Deflection", column (vi), is obtained
using equations 14.1 and 14.2.

Hence Dm using equation 14.3

Plot graphs of Dynamic Magnifier Dm and Phase Angle each to a base of the ratio W.

\
n

Typical graphs are shown in Figs 14.3 and 14.4. Similar results can be obtained for different degrees of
damping.
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